CIRCLES
 SSLC - MATHEMATICS CHAPTER 10 CIRCLES ENGLISH VERSION English version

Chapter -10
 Circles

Main point to be Remember

Equal chords are equidistant from the centre.

Angles in the same segment are equal.

Angles in the major segment are acute angles.

Angles in the minor segment are obtuse angles.

Angles in a semi-circle are right angles.

Characteristics of Tangents

- In any circle, the radius drawn at the point of contact is perpendicular to the tangent.
- The perpendicular to the radius at its non-centre end is the tangent to the circle.
- Observe that, in a circle angle between the radii and angle between the tangents drawn at their non-centre ends are supplementary.
- The perpendicular to the tangent at the point of contact passes through the centre of the circle.
- Tangents drawn at the ends of a diameter are parallel to each other
- Only two tangents can be drawn from an external point to a circle
- Only one tangent can be drawn to a circle at any point on it.
- The tangents drawn from an external point to a circle are equal.
- Two circles having only one common point of contact are called touching circles.
- If two circles touch each other externally, the distance between their centres is equal to the sum of their radii $[\mathrm{d}=\mathrm{R}+\mathrm{r}]$
- If two circles touch each other internally, the distance between their centres is equal to the difference of their radii $[d=R-r]$
- If two circles touch each other, their centres and the point of contact are collinear.
- If both the circles lie on the same side of a common tangent, then the common tangent is called a direct common tangent (DCT)
- If both the circles lie on either side of a common tangent, then the common tangent is called a transverse common tangent (TCT).
- Length of the tangent drawn from an external point $t=\sqrt{\mathrm{d}^{2}-\mathrm{r}^{2}}$
- DCT $t=\sqrt{\mathrm{d}^{2}-(\mathrm{R}-\mathrm{r})^{2}}$
- TCT $\mathrm{t}=\sqrt{\mathrm{d}^{2}-(\mathrm{R}+\mathrm{r})^{2}}$

Exercise 10.1

1. Draw a circle of radius 3.5 cm and construct a chord of length 6 cm in it. Measure the distance between the centre and the chord

Distance between the centre and the chord $=1.8 \mathrm{~cm}$
2. Construct two chords of length 6 cm and 8 cm on the same side of the centre of a circle of radius 4.5 cm . Measure the distance between the centre and the chords .

Chord $\mathrm{OP}=2.1 \mathrm{~cm}(2.06)$ and $\mathrm{OQ}=3.3 \mathrm{~cm}$
3. Construct two chords of length 6.5 cm each on either side of the centre of a circle of radius 4.5 cm . Measure the distance between the centre and the chords.

Distance between the chord and the centre is 3.1 cm
4. Construct two chords of length 9 cm and 7 cm on either side of the centre of a circle of radius 5 cm . Measure the distance between the centreand the chord.

Exercise10.2

1. Draw three concentric circles of radii $1.5 \mathrm{~cm}, 2.5 \mathrm{~cm}$ and 3.5 cm with O as centre.

2. With O_{1} and O_{2} as centres draw two circles of same radii 3 cm and with the distance between the two centres equal to 5 cm

3.Draw a line segment $\mathrm{AB}=8 \mathrm{~cm}$ and mark its mid point as C . With 2 cm as radius draw three circles having A, B and C as centres. With C as centre and 4 cm radius draw another circle. Identify and name the concentric circles and congruent circlesAB $=8 \mathrm{~cm}$

4.Draw a circle of radius 4 cm and construct a chord of 6 cm length in it. Draw two angles in major segment and two angles in minor segment. Verify that angles in major segment are acute angles and angles in minor segment are obtuse angles by measuring them

Exercise10.3

1. Draw a circle of radius 4 cm and construct a tangent at any point on the circle 4 cm .

Q
2. Draw a circle of diameter 7 cm and construct tangents at the ends of a diameter

3. In a circle of radius 3.5 cm draw two mutually perpendicular diameters. Construct tangents at the ends of the diameters

4. In a circle of radius 4.5 cm draw two radii such that the angle between them is 70°.

Construct tangents at the non-centre ends of the radii.

5. Draw a circle of radius 3 cm and construct a pair of tangents such that the angle between them is 40°.

6. Draw a circle of radius 4.5 cm and a chord PQ of length 7 cm in it. Construct a tangent at P.

7.In a circle of radius 5 cm draw a chord of length 8 cm . Construct tangents at the ends of the chord.

8. Draw a circle of radius 4 cm and construct chord of length 6 cm in it. Draw a perpendicular radius to the chord from the centre. Construct tangents at the ends of the chord and the radius.

9. Draw a circle of radius 3.5 cm and construct a central angle of measure 80° and an inscribed angle subtended by the same arc. Construct tangents at the points on the circle. Extend tangents to intersect. What do you observe?

Extend tangents to intersect we get a tringle
10. In a circle of radius 4.5 cm draw two equal chords of length 5 cm on either sides of the centre. Draw tangents at the end points of the chords .

ILLUSTRATED EXAMPLES

Example 1 : In the figure, a circle is inscribed in a quadrilateral ABCD in which $\angle B=90^{\circ}$. If $\mathrm{AD}=23 \mathrm{~cm}, \mathrm{AB}=29 \mathrm{~cm}$ and $\mathrm{DS}=5 \mathrm{~cm}$ find the radius of the circle.
Sol: In the figure. $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA are the tangents drawn to the circle at $\mathrm{Q}, \mathrm{P}, \mathrm{S}$ and R respectively.
$\mathrm{DS}=\mathrm{DR}$ (tangents drawn from an external point D to the circle.)
but $\mathrm{DS}=5 \mathrm{~cm} \quad$ (given)
$\therefore \mathrm{DR}=5 \mathrm{~cm}$
In the fibure $\mathrm{AD}=23 \mathrm{~cm}$ (given)
$\therefore \mathrm{AR}=\mathrm{AD}-\mathrm{DR}=23-5=18 \mathrm{~cm}$
but $A R=A Q$
(tangents drawn from an external point A to the circle)
$\therefore \mathrm{AQ}=18 \mathrm{~cm}$.
If $\mathrm{AQ}=18 \mathrm{~cm}$ then \quad (given $\mathrm{AB}=29 \mathrm{~cm}$)
$\mathrm{BQ}=\mathrm{AB}-\mathrm{AQ}=29-18=11 \mathrm{~cm}$
In a quadrilateral BQOP,
$\mathrm{BQ}=\mathrm{BP}$ (tangents drawn from an external point B)
$\mathrm{OQ}=\mathrm{OP} \quad$ (radii of the same circle)

$\angle \mathrm{QBP}=\angle \mathrm{QOP}=90^{\circ} \quad$ (given)
$\angle \mathrm{OQB}=\angle \mathrm{OPB}=90^{\circ} \quad$ (angle between the radius and the tangent at the point of contact.)
$\therefore \mathrm{BQOP}$ is a square.
\therefore radius of the circle, $\mathrm{OQ}=11 \mathrm{~cm}$
Example: In the fig. AP and BP are the tangents drawn from an external point P. Prove that $\angle A O B$ and $\angle A P B$ are supplementary.
Sol: Data : O is the centre of the circle. P is an external point. PA and PB are the tangents drawn from an external point P.
To prove : $\angle \mathrm{AOB}+\angle \mathrm{APB}=180^{\circ}$
Proof: In quadrilateral AOBP, $\angle \mathrm{AOB}+\angle \mathrm{OBP}+\angle \mathrm{BPA}+\angle \mathrm{PAO}=360^{\circ}$
but $\angle \mathrm{OBP}=90^{\circ}$ and $\angle \mathrm{OAP}=90^{\circ}$
$\therefore \mathrm{AOB}+90^{\circ}+\angle \mathrm{BPA}+90^{\circ}=360^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{BPA}+180^{\circ}=360^{\circ}$
$\angle \angle \mathrm{AOB}+\angle \mathrm{BPA}=360^{\circ}-180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{BPA}=180^{0}$

$\therefore \angle \mathrm{AOB}$ and $\angle \mathrm{BPA}$ are supplementary.
Example 3 : In the figure, PQ and PR are the tangents to a circle with centre O . If $\angle \mathrm{P}=\frac{4}{5} \angle \mathrm{O}$ find $\angle \mathrm{O}$ and $\angle \mathrm{P}$.
Sol: In the figure $\angle \mathrm{QPR}+\angle \mathrm{QOR}=180^{\circ}$ [\because Opposite angles are supplementary]
But, $\angle \mathrm{QPR}=\frac{4}{5} \angle \mathrm{QOR}$
$\therefore \frac{4}{5} \angle \mathrm{QOR}+\angle \mathrm{QOR}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOR}=\frac{5 \times 1800}{9}=100^{\circ}$
If $\angle \mathrm{QOR}=100^{\circ}$ then $\angle \mathrm{QPR}=180^{\circ}-\angle \mathrm{QOR}$
$=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \angle \mathrm{QPR}=80^{\circ}$

Example 4 :In the figure O is the centre of the circle. The tangents at B and D intersect each other at point P . If AB is parallel to CD and $\angle \mathrm{ABC}=55^{\circ}$ Find (i) $\angle \mathrm{BOD}$ (ii) $\angle \mathrm{BPD}$
Sol: In the figure $\mathrm{AB} \| \mathrm{CD}$ (given)
$\therefore \quad \angle \mathrm{ABC}=\angle \mathrm{BCD} \quad(\because$ alternate angles $)$
But, $\angle \mathrm{ABC}=55^{\circ} \quad(\because$ given $)$
$\angle \mathrm{BCD}=55^{\circ}$
In the figure $\angle \mathrm{BOD}=2 \angle \mathrm{BCD}$
(central angle is twice the inscribed angle.)
$\therefore \angle \mathrm{BOD}=2 \times 55^{\circ}=110^{\circ}$.
But, $\angle \mathrm{BOD}+\angle \mathrm{BPD}=180^{\circ}$
$\therefore \angle \mathrm{BPD}=180^{\circ}-\angle \mathrm{BOD}=180^{\circ}-110^{\circ}=70^{\circ}$

Example 5 : In the figure, show that perimeter of $\triangle \mathrm{ABC}=2\left(\mathrm{AP}+\mathrm{BQ}_{\mathrm{A}} \mathrm{CR}\right)$.
Sol: Perimeter of $\triangle A B C=A B+B C+A C$
$=\mathrm{AP}+\mathrm{PB}+\mathrm{BQ}+\mathrm{QC}+\mathrm{CR}+\mathrm{RA}$
But, $\mathrm{AP}=\mathrm{AR} \quad$ (tangents drawn from A to the circle)
$\mathrm{PB}=\mathrm{BQ} \quad$ (tangents drawn from B to the circle)
$\mathrm{CQ}=\mathrm{CR} \quad$ (tangents drawn from C to the circle)
\therefore Perimeter of $\triangle \mathrm{ABC}=\mathrm{AP}+\mathrm{BQ}+\mathrm{BQ}+\mathrm{CR}+\mathrm{CR}+\mathrm{AP}$
$=2 \mathrm{AP}+2 \mathrm{BQ}+2 \mathrm{CR}$
$=2(\mathrm{AP}+\mathrm{BQ}+\mathrm{CR})$

Exercise 10.4

A. Numerical problems based on tangent properties

1. In the figure $P Q, P R$ and $B C$ are the tangents to the circle $B C$ touches the circle at X. If $P Q=7 \mathrm{~cm}$, find the perimeter of $\triangle P B C$
The perimeter of $\triangle \mathrm{PBC}=\mathrm{PC}+\mathrm{PB}+\mathrm{BC}$
$=\mathrm{PC}+\mathrm{PB}+\mathrm{BX}+\mathrm{CX}$
But $\mathrm{CX}=\mathrm{CR}$ and $\mathrm{BX}=\mathrm{BQ}[\because$ tangents drawn from an external point $]$
$\therefore \mathrm{PC}+\mathrm{PB}+\mathrm{BQ}+\mathrm{CR}$
$=(\mathrm{PC}+\mathrm{CR})+(\mathrm{PB}+\mathrm{BQ})$
$=P R+P Q$
$=7+7 \quad[\because \mathrm{PR}=\mathrm{PQ}$, tangents drawn from an external point $]$
$=14 \mathrm{~cm}$

2. Two concentric circles of radii 13 cm and 5 cm are drawn Find the length of the chord of the outer circle which touches the inner circle.
O^{\prime} is the centre, AB is the tangent drawn to a inner circle through the point P $\mathrm{AP}=\mathrm{PB}[\because$ The perpendicular drawn from the point of contact devides the chord equally] In $\triangle \mathrm{OAP}, \angle \mathrm{OPA}=90^{\circ}$
$\therefore \mathrm{AP}^{2}+\mathrm{OP}^{2}=\mathrm{OA}^{2}[\because$ Pythagoras Theroem $]$
$\Rightarrow \mathrm{AP}^{2}+5^{2}=13^{2}$
$\Rightarrow \mathrm{AP}^{2}+25=169$
$\Rightarrow \mathrm{AP}^{2}=169-25$
$\Rightarrow \mathrm{AP}^{2}=144$
$\Rightarrow A P=14 \mathrm{~cm}$
\therefore Chord $\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=14+14=28 \mathrm{~cm}$

3. In the given $\triangle A B C, A B=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$. Find AF, BD and CE

In $\triangle \mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=12+8+10$
$\Rightarrow \mathrm{AD}+\mathrm{BD}+\mathrm{BE}+\mathrm{CE}+\mathrm{AF}+\mathrm{CF}=30$
But $\mathrm{AF}=\mathrm{AD}=\mathrm{x}$ [\because tangents drawn from an external point] $\mathrm{BE}=\mathrm{BD}=\mathrm{y}[\because$ tangents drawn from an external point $]$ $\mathrm{CE}=\mathrm{CF}=\mathrm{z}[\because$ tangents drawn from an external point $]$ $\therefore \mathrm{x}+\mathrm{y}+\mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{x}=30$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=30$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=15$
$A B=x+y=12 \mathrm{~cm}, B C=y+z=8 \mathrm{~cm}, A C=x+z=10 \mathrm{~cm}$
(1) $\Rightarrow 12+\mathrm{z}=15[\because \mathrm{x}+\mathrm{y}=12 \mathrm{~cm}]$
$\therefore \mathrm{z}=15-12$
$\therefore \mathrm{z}=3 \mathrm{~cm}$
$(1) \Rightarrow \mathrm{x}+8=15[\because \mathrm{y}+\mathrm{z}=8 \mathrm{~cm}]$
$\therefore \mathrm{x}=15-8$
$\therefore \mathrm{x}=7 \mathrm{~cm}, \mathrm{BD}=\mathrm{y}=5 \mathrm{~cm}$,
(1) $\Rightarrow \mathrm{y}+10=15[\because \mathrm{x}+\mathrm{z}=10 \mathrm{~cm}]$
$\therefore \mathrm{y}=15-10$
$\therefore y=5 \mathrm{~cm}$
$\therefore \mathrm{AF}=\mathrm{x}=10 \mathrm{~cm}$, $\mathrm{BD}=\mathrm{y}=5 \mathrm{~cm}, \mathrm{CE}=\mathrm{z}=3 \mathrm{~cm}$
4. In the given quadrilateral $\mathrm{ABCD}, \mathrm{BC}=38 \mathrm{~cm}, \mathrm{QB}=27 \mathrm{~cm}, \mathrm{DC}=25 \mathrm{~cm}$ and $\mathrm{AD} \perp \mathrm{DC}$ find the radius of the circle .
In the figure OPDS ,
DS $=$ DP $[\because$ tangents drawn from an external point $]$
$\mathrm{OP}=\mathrm{OS} \quad[\because$ Radius of a circle $]$
$\angle D=90^{\circ} \quad[\because \mathrm{AD} \perp \mathrm{DC}]$
\therefore OPDS is a square.
In the figure,
$\mathrm{BQ}=\mathrm{BR}=27 \mathrm{~cm}[\because$ tangents drawn from an external point $]$
$\mathrm{CR}=38-27=11 \mathrm{~cm}=\mathrm{CS}[\because$ tangents drawn from an external point $]$

DS $=25-11=14 \mathrm{~cm}=$ DP [\because tangents drawn from an external point]
\therefore Radius of the circle $=\mathrm{OP}=\mathrm{OS}=14 \mathrm{~cm}[\because \mathrm{OPDS}$ is a square. $]$
5. In the given figure $\mathrm{AB}=\mathrm{BC}, \angle \mathrm{ABC}=68^{0} \mathrm{DA}$ and DB are the tangents to the circle with centre are the tangents to the circle with centreO calculate the measure of Calculate the measure of
(i) $\angle A C B$
(ii) $\angle \mathrm{AOB}$ దుత్తు
(iii) $\angle A D B$

In the figre, $\mathrm{AB}=\mathrm{BC}, \angle \mathrm{ABC}=68^{\circ}$
(i). $\angle \mathrm{ACB}=\angle \mathrm{BAC}=180^{\circ}-68^{\circ}$
$=\frac{180^{0}-68^{0}}{2}=\frac{112}{2}=56^{0} \quad[\because \mathrm{AB}=\mathrm{BC}]$
(ii). $\angle \mathrm{AOB}=2 \mathrm{x} \angle \mathrm{ACB}=2 \mathrm{x} 56=112^{0}$

[\because The angle forming from an arc at the centre $=2 x$ Angle in the circumference]
(iii). $\angle \mathrm{ADB}=180^{\circ}-\angle \mathrm{AOB}=180^{\circ}-112^{\circ}=68^{\circ}$
[\because Angle between tangents + angle in the centre $=180$]
B. Raiders Based on tangent properties

1. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.
$\mathrm{AP}=\mathrm{AS}=\mathrm{m}[\because$ tangents drawn from an external point $]$
$\mathrm{BP}=\mathrm{BQ}=\mathrm{n} \quad[\because$ tangents drawn from an external point $]$
$\mathrm{CQ}=\mathrm{CR}=\mathrm{q} \quad[\because$ tangents drawn from an external point $]$
$\mathrm{DR}=\mathrm{DS}=\mathrm{r} \quad[\because$ tangents drawn from an external point $]$
$\mathrm{AB}+\mathrm{CD}=\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{m}+\mathrm{n}+\mathrm{q}+$
$A D+B C=A S+D S+B Q+C Q$

$=\mathrm{m}+\mathrm{r}+\mathrm{n}+\mathrm{q}=\mathrm{m}+\mathrm{n}+\mathrm{q}+\mathrm{r}$
From (1) and (2)
$A B+C D=A D+B C$
2. Tangents $A P$ and $A Q$ are drawn to circle with centre O, from an external point A.

Prove that $\angle \mathrm{PAQ}=2 \angle \mathrm{OPQ}$.
$\angle \mathrm{POQ}+\angle \mathrm{PAQ}=180^{\circ}[\because$ Angle between tangents + angle in the centre $=180]$
$\triangle \mathrm{POQ}$ నలల్లి $\angle \mathrm{OPQ}=\angle \mathrm{OQP}[\because \mathrm{OP}=\mathrm{OQ}$, Radius of the circle $]$
In $\triangle \mathrm{POQ}, \angle \mathrm{POQ}+\angle \mathrm{OPQ}+\angle \mathrm{OQP}=180^{\circ}[\because$ Sum of the Angle of a triangle $]$
$\therefore \angle \mathrm{POQ}+2 \angle \mathrm{OPQ}=180^{\circ}[\because \angle \mathrm{OPQ}=\angle \mathrm{OQP}]$
(1) దుత్తు (2) రింద్,

$$
\begin{aligned}
& \angle \mathrm{POQ}+\angle \mathrm{PAQ}=\angle \mathrm{POQ}+2 \angle \mathrm{OPQ} \\
& \angle \mathrm{PAQ}=2 \angle \mathrm{OPQ}
\end{aligned}
$$

3. In the figure two circles touch each other externally at P . AB is a direct common tangent to these circles. Prove that,
(a) tangent at P bisects AB at Q .
(b) $\angle \mathrm{APB}=90^{\circ}$.
(a) In the figure,

QA $=$ QP [\because tangents drawn from an external point $]--(1)$
$\mathrm{QB}=\mathrm{QP}[\because$ tangents drawn from an external point $]--(2)$
(1) and (2)
$\mathrm{QA}=\mathrm{QB}$
$\therefore \mathrm{P}$ bisects AB at Q .
(b) .In $\triangle \mathrm{APB}$,
$\angle \mathrm{QAP}=\angle \mathrm{APQ}=\mathrm{x}[\because \mathrm{QA}=\mathrm{QP}]$
$\angle \mathrm{QPB}=\angle \mathrm{BPQ}=\mathrm{y}[\because \mathrm{QB}=\mathrm{QP}]$
$\therefore \triangle \mathrm{APB}$ యిల్లి $\mathrm{x}+\mathrm{x}+\mathrm{y}+\mathrm{y}=180^{\circ}[\because$ Sum of the Angle of a triangle $]$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}=180^{\circ}$
$\Rightarrow \mathrm{x}+\mathrm{y}=90^{\circ}$
$\Rightarrow \angle \mathrm{APB}=90^{\circ}$
4. A pair of perpendicular tangents are drawn to a circle from an external point. Prove that length of each tangent is equal to the radius of the circle
In the figure,
PA $=$ PB $[\because$ tangents drawn from an external point $]$
$\mathrm{OA}=\mathrm{OB}[\because$ Radius of the circle $]$
$\angle \mathrm{APB}=90^{\circ}[\because$ Given $]$
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}[\because$ The angle between tangent and the radius $]$
$\therefore \angle \mathrm{AOB}=90^{\circ}\left[\because\right.$ The sum of angles of a quadrilateral $=360^{\circ}$]
\therefore OABP is a square
\therefore Tangents (PA and PB) $=$ Radius of the circle (OA and OB)

5. If the sides of a parallelogram touch a circle. Prove that the parallelogram is a rhombus.

Let ABCD be a parallelogram.
$\therefore \mathrm{AB} \| \mathrm{CD}, \mathrm{AB}=\mathrm{CD} \quad[\because$ Given $]$
$\mathrm{AD} \| \mathrm{BC}, \mathrm{AD}=\mathrm{BC} \quad[\because$ Given $]$
$\mathrm{AP}=\mathrm{AS}, \mathrm{PB}=\mathrm{BQ}[\because$ tangents drawn from an external point $]$
$\mathrm{DS}=\mathrm{DR}, \mathrm{QC}=\mathrm{RC}$
$\Rightarrow A B+C D=A P+P B+C R+D R$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AS}+\mathrm{BQ}+\mathrm{QC}+\mathrm{DS}$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
$\Rightarrow 2 \mathrm{AB}=2 \mathrm{AD}[\because$ దత్త $\mathrm{AB}=\mathrm{CD} ; \mathrm{AD}=\mathrm{BC}]$

$\Rightarrow \mathrm{AB}=\mathrm{AD}$
$\Rightarrow \mathrm{AB}=\mathrm{AD}=\mathrm{CD}=\mathrm{BC}$
$\Rightarrow \mathrm{ABCD}$ is a rhombus $[\because$ Side of the parallelogram are equal.
5. In the figure, if $\mathrm{AB}=\mathrm{AC}$ prove that $\mathrm{BQ}=\mathrm{QC}$.
$\mathrm{AP}=\mathrm{AR}----(1)[\because$ tangents drawn from an external point $]$ and $A B=A C--------(2)[\because$ Given $]$
(1)- $-(2)$

$\therefore \mathrm{AB}-\mathrm{AP}=\mathrm{AC}-\mathrm{AR}$
$\therefore \mathrm{BP}=\mathrm{CR}$
But, $\mathrm{BQ}=\mathrm{BP}$ and $\mathrm{CQ}=\mathrm{CR}[\because$ tangents drawn from an external point $]$
$\therefore \mathrm{BQ}=\mathrm{CQ}$

Exercise 10.5

1. Draw a circle of radius 6 cm and construct tangents to it from an external point 10 cm away from the centre. Measure and verify the length of the tangents

Length of the tangent $t=\sqrt{d^{2}-r^{2}}$
Length of the tangent $t=\sqrt{10^{2}-6^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
2. Construct a pair of tangents to a circle of radius 3.5 cm from a point 3.5 cm away from the circle

3. Construct a tangent to a circle of radius 5.5 cm from a point 3.5 cm away from it 5 cm

4. Draw a pair of perpendicular tangents of length 5 cm to a circle

5. Construct tangents to two concentric circles of radii 2 cm and 4 cm from a point 8 cm away from the centre

ILLUSTRATIVE EXAMPLES

Example 1.Three circles touch each other externally. Find the radii of the circles if the sides of the triangle obtianed by joining the centres are $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 16 cm respectively.
Sol. Circles with centres A, B and C touch each other externally at P, Q and R respectively
As shown in the figure,
Let $\mathrm{AP}=\mathrm{x}$
$\therefore \mathrm{PB}=\mathrm{BQ}=10-\mathrm{x}$
$\mathrm{RC}=\mathrm{CQ}=14-\mathrm{x}$
But, $C Q+B Q=16$
$14-\mathrm{x}+10-\mathrm{x}=16$
$24-2 x=16$
$24-16=2 x$
$2 \mathrm{x}=8$
$\mathrm{x}=4$
$\therefore \mathrm{AR}=\mathrm{AP}=4 \mathrm{~cm}$ radius of the circle with centre A

$\mathrm{BQ}=10-4=6 \mathrm{~cm} \quad$ radius of the circle with centre B
$C R=14-4=10 \mathrm{~cm}$ radius of the circle with centre C
Example 2.In the figure P and Q are the centres of the circles with radii 9 cm and 2 cm respectively. If $\angle P R Q 90^{\circ}$ and $P Q 17 \mathrm{~cm}$ find the radius of the circle with centre R
Let the radius of the circle with centre $\mathrm{R}=\mathrm{x}$ units.
\therefore In $\triangle \mathrm{PQR}$
$P Q=17 \mathrm{~cm}$
$P R=(x+9) \mathrm{cm}$
$\mathrm{QR}=(\mathrm{x}+2) \mathrm{cm}$ and $\angle \mathrm{PRQ}=90^{\circ}$
$\mathrm{R}=(\mathrm{x}+2) \mathrm{cm}$ and $\mathrm{PRQ}=90^{\circ}$
$\therefore \mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2} \quad$ (Pythagoras theorem)
$17^{2}=(x+9)^{2}+(x+2)^{2}$
$289=x^{2}+81+18 x+x^{2}+4+4 x$
$2 \mathrm{x}^{2}+22 \mathrm{x}+85-289=0$
$2 x^{2}+22 x-204=0 \div$ by 2

$x^{2}+11 x-102=0 \Rightarrow(x+17)(x-6)=0$
$\Rightarrow \mathrm{x}+17=0$ or $\mathrm{x}-6=0$
$x=-17$ or $x=6$
\therefore radius of the circle with centre $\mathrm{R}=6 \mathrm{~cm}$
Example 3. In the figure circles with centres A and B touch each other internally. P is the point of contact. Prove that $\mathrm{AR} \| \mathrm{BQ}$.
Sol: In the figure, Let $\angle \mathrm{BPQ}=\mathrm{x}^{0}$.
In $\triangle \mathrm{PBQ}$,
$\mathrm{BP}=\mathrm{BQ}[\because$ Radii of the same circle $]$
$\therefore \angle \mathrm{BQP}=\angle \mathrm{BPQ}$
[\because angles opposite to equal sides of an isosceles \square le]
$\therefore \angle \mathrm{BQP}=\mathrm{x}^{0}------(1)\left[\because \angle \mathrm{BPQ}=\mathrm{x}^{0}\right]$
Similarly, In \triangle PAR,
AP $=$ AR $[\because$ Radii of the same circle $]$
$\angle A R P=\angle A P R$
$[\because$ angles opposite to equal sides of an isosceles \square le]
$\therefore \angle A R P=\mathrm{x}^{0}------(2)\left[\because \angle A P R=\mathrm{x}^{0}\right]$
From (1) and (2),

R
$\angle \mathrm{BQP}=\angle \mathrm{ARP}$
F

But, $\angle \mathrm{BQP}$ and $\angle \mathrm{ARP}$ are corresponding angles $\therefore \mathrm{AR} \| \mathrm{BQ}$

Exercise 10.6

A. Numerical problems on touching circles.

1. Three circles touch each other externally. Find the radii of the circles if the sides of the triangle formed by joining the centres are $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 9 cm respectively.
In the figure,
Let Radius of the circles be $\mathrm{AP}=\mathrm{x}, \mathrm{BQ}=\mathrm{y}$ దుత్తు $\mathrm{CR}=\mathrm{z}$.
$\mathrm{AB}=\mathrm{AP}+\mathrm{BP}=\mathrm{x}+\mathrm{y}=7 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{BQ}+\mathrm{CQ}=\mathrm{y}+\mathrm{z}=8 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{CR}+\mathrm{AR}=\mathrm{z}+\mathrm{x}=9 \mathrm{~cm}$

SSLC CLASS NOTES: CHAPTER 10-CIRCLES [English Version]

The perimeter of $\triangle \mathrm{ABC} 3 \Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{AC}=7+8+9=24$
$\Rightarrow \mathrm{AP}+\mathrm{BP}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{CR}+\mathrm{AR}=24$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{x}=24$
$\Rightarrow 2 x+2 y+2 z=24$
$\Rightarrow x+y+z=12$
$7+z=12 \Rightarrow z=12-7=5 \mathrm{~cm}[\because x+y=7]$
$x+8=12 \Rightarrow x=12-8=4 \mathrm{~cm}[\because y+z=8]$
$y+9=12 \Rightarrow y=12-9=3 \mathrm{~cm}[\because z+x=9]$

2. Three circles with centres A, B and C touch each other as shown in the figure. If the radii of these circles are $8 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm respectively, find the perimeter of $\triangle \mathrm{ABC}$.

The perimeter of $\triangle \mathrm{ABC} .=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
$\mathrm{AB}=\mathrm{AM}-\mathrm{BM}=8-3=5 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{BQ}+\mathrm{CQ}=3+2=5 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{AN}-\mathrm{CN}=8-2=6 \mathrm{~cm}$
\therefore The perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
$=5+5+6=16 \mathrm{~cm}$

3. In the figure $A B=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and the radius of the smaller circleis xcm . Find $\hat{n} \mathrm{x}$.
$\Delta \mathrm{OPC}$ యల్లి, $\angle \mathrm{PCO}=90^{\circ}$
$\therefore \mathrm{PC}^{2}=\mathrm{OP}^{2}-\mathrm{OC}^{2}$
$\therefore \mathrm{x}^{2}=(\mathrm{OQ}-\mathrm{PQ})^{2}-(\mathrm{AC}-\mathrm{OA})^{2}$
$[\because \mathrm{OP}=\mathrm{OQ}-\mathrm{PQ}, \mathrm{OC}=\mathrm{AC}-\mathrm{AO}]$
$\therefore \mathrm{x}^{2}=(5-\mathrm{x})^{2}-(6-5)^{2} \quad[\because \mathrm{OQ}=\mathrm{OA}=5]$
$\therefore \mathrm{x}^{2}=25-10 \mathrm{x}+\mathrm{x}^{2}-1$
$\therefore 10 \mathrm{x}=24 \Rightarrow \mathrm{x}=2.4 \mathrm{~cm}$

B. Raiders based on touching circles.

1. A straight line drawn through the point of contact of two circles with centres A and B intersect the circles at P and Q respectively. Show that AP and BQ are parallel.
$\angle \mathrm{AOP}=\mathrm{BOQ}[\because$ Vertically opposite angles]
$\angle \mathrm{APO}=\angle \mathrm{AOP}[\because \mathrm{AO}=\mathrm{AP}$ Radius of the circle $]$
$\angle \mathrm{BQO}=\angle \mathrm{BOQ}$
$\Rightarrow \angle \mathrm{APO}=\angle \mathrm{BQO}$
Thes are alternate angles,
$\therefore \mathrm{AP} \| \mathrm{BQ}$

2. Two circles with centres X and Y touch each other externally at P. Two diameters $A B$ and $C D$ are drawn one in each circle parallel to other. Prove that B, P and C are collinear.
$\angle \mathrm{BXP}=\angle \mathrm{PYC}[\because$ Alternate angles $\mathrm{AB} ॥ \mathrm{CD}]$
$\angle \mathrm{BPX}=\angle \mathrm{PBX}[\because \mathrm{XB}=\mathrm{XP}$ Radii $]$
$\therefore \angle \mathrm{BPX}+\angle \mathrm{PBX}+\angle \mathrm{BXP}=180^{0}$
$\therefore 2 \angle \mathrm{BPX}+\angle \mathrm{BXP}=180^{\circ}-----(1)$
$\angle \mathrm{CPY}=\angle \mathrm{PCY}[\because \mathrm{YP}=\mathrm{YC}$ Radii $]$
$\therefore \angle \mathrm{CPY}+\angle \mathrm{PCY}+\angle \mathrm{PYC}=180^{0}$
$\therefore 2 \angle \mathrm{CPY}+\angle \mathrm{PYC}=180^{\circ}-\ldots----(2)$
From(1) and (2) .
$2 \angle \mathrm{BPX}+\angle \mathrm{BXP}=2 \angle \mathrm{CPY}+\angle \mathrm{PYC}$
$\Rightarrow 2 \angle \mathrm{BPX}=2 \angle \mathrm{CPY}$
$\Rightarrow \quad \angle \mathrm{BPX}=\angle \mathrm{CPY}$

These are vertically opposite angles
$\therefore \mathrm{B}, \mathrm{P}, \mathrm{C}$ are collinear.
3. In circle with centre O , diameter AB and a chord AD are drawn. Another circle is drawn with OA as diameter to cut AD at C . prove that $\mathrm{BD}=2 \mathrm{OC}$.
$\angle \mathrm{ADB}=90^{\circ}[\because$ Angle of semicircle $]$
$\angle \mathrm{ACO}=90^{\circ}[\because$ Angle of semicircle $]$
In $\triangle A D B$ and $\triangle A O C$,
$\angle \mathrm{ADB}=\angle \mathrm{ACO}=90^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{A}$
$\therefore \triangle \mathrm{ADB} \sim \triangle \mathrm{AOC}$
\therefore By B.P.T. $\frac{\mathrm{BD}}{\mathrm{OC}}=\frac{\mathrm{AB}}{\mathrm{AO}}$
$\Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{OC}}=\frac{2 \mathrm{AO}}{\mathrm{AO}}[\because \mathrm{AB}=2 \mathrm{AO}]$
$\Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{OC}}=2$
$\Rightarrow \quad B D=20 C$
4. In the given figure $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{M}$ is the mid point of $\mathrm{AB} A$ circle with centre ' O ' touches all three semicircles as shown. Prove that the radius of this circle is shown. Prove that the radius of this circle is $\frac{1}{6} \mathrm{AB}$.
$\triangle \mathrm{OPC}$ యల్లి, $\angle \mathrm{POC}=90^{\circ}$

$\therefore(\mathrm{CP}+\mathrm{OP})^{2}=(\mathrm{MR}-\mathrm{OR})^{2}+\mathrm{MC}^{2}$
$\therefore(2+\mathrm{x})^{2}=(4-\mathrm{x})^{2}+2^{2}$
$\therefore 4+4 x+x^{2}=16-8 x+x^{2}+4$
$\therefore 4+4 \mathrm{x}=16-8 \mathrm{x}+4$
$\therefore 12 \mathrm{x}=16$
$\therefore \mathrm{x}=\frac{16}{12}$
$\therefore \mathrm{x}=\frac{8}{6}$
$\therefore \mathrm{x}=\frac{1}{6} \mathrm{x} 8$

$\left.\therefore \mathrm{x}=\frac{1}{6} \mathrm{AB}[\because \mathrm{AB}=8]\right]$

Exercise 10.7

1. Draw two circles of radii 5 cm and 2 cm touching externally

2. Construct two circles of radii 4.5 cm and 2.5 cm whose centres are at 7 cm apart.

3.Draw two circles of radii 4 cm and 2.5 cm touching internally. Measure and verify the distance between their centres.

3. Distance between the centres of two circles touching internally is 2 cm . If the radius of one of the cirles is 4.8 cm , find the radius of the other circle and hence draw the touching circles.

Exercise10.8

I.(A).1. Draw two congruent circles of radii 3 cm , having their centres 10 cm apart.

Draw a direct common tangent

2. Draw two direct common tangents to two congruent circles of radii 3.5 and whose distance between them is 3 cm .

3. Construct a direct common tangent to two externally touching circles of radii.

4. Draw a pair of direct common tangents to two circles of radii 2.5 cm whose centres are at 4 cm apart

(B). 1. Construct a direct common tangent to two circles of radii 5 cm and 2 cm whose centres are 3 cm apart.

2. Draw a direct common tangent to two internally touching circles of radii 4.5 cm and 2.5 cm .

3. Construct a direct common tangent to two circles of radii 4 cm and 2 cm whose centres are 8 cm apart. Measure and verify the length of the tangent

4. Two circles of radii 5.5 cm and 3.5 cm touch each other externally. Draw a direct common tangent and measure its length.

5. Draw direct common tangents to two circles of radii 5 cm and 3 cm having their centres 5 cm apart.

6. Two circles of radii 6 cm and 3 cm are at a distantce of 1 cm . Draw a direct common tangent, measure and verify its length.

II.(A).1. Draw a transverse common tangent to two circles of radii 6 cm and 2 cm whose centres are 8 cm apart

2. Two circles of radii 4.5 cm and 2.5 cm touch each other externally. Draw a transverse common tangent.

3. Two circles of radii 3 cm each have their centres 6 cm apart. Draw a transverse common tangent.

(B). 1. Construct a direct common tangent to two circles of radii 5 cm and 2 cm whose centres are 3 cm apart.

2. Draw a direct common tangent to two internally touching circles of radii 4.5 cm and 2.5 cm

3. Construct a direct common tangent to two circles of radii 4 cm and 2 cm whose centres are 8 cm apart. Measure and verify the length of the tangent

4. Two circles of radii 5.5 cm and 3.5 cm touch each other externally. Draw a direct common tangent and measure its length.

$\mathrm{t}=\sqrt{d^{2}-(R+r)^{2}} \Rightarrow \mathrm{t}=\sqrt{10^{2}-(4+3)^{2}}=\sqrt{100-49}=\sqrt{51}=7.1 \mathrm{~cm}$
5. Draw direct common tangents to two circles of radii 5 cm and 3 cm having their centres 5 cm apart.
$\mathrm{t}=\sqrt{d^{2}-(R+r)^{2}}$
$\mathrm{t}=\sqrt{8^{2}-(2.5+3.5)^{2}}$
$t=\sqrt{64-36}$
$\mathrm{t}=\sqrt{28}$
$\mathrm{t}=5.29 \mathrm{~cm}$

Theorem on Circles

Theorem: The tangents drawn from an external point to a circle,
(a) are equal
(b) subtend equal angles at the centre
(c) are equally inclined to the line joining the centre and the external point.

Data: A is the centre of the circle. B is an external point BP and BQ are the tangents $A P, A Q$ and $A B$ are joined

To Prove :

(a) $\mathrm{BP}=\mathrm{BQ}$
(b) $\angle \mathrm{PAB}=\angle \mathrm{QAB}$
(c) $\angle \mathrm{PBA}=\angle \mathrm{QBA}$

Proof:

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$,

$\mathrm{AP}=\mathrm{AQ}$	radii of the same circle
$\angle \mathrm{APB}=\angle \mathrm{AQB}=90^{\circ}$	Radius drawn at the point of contact is perpendicular to the tangent
$\mathrm{AB}=\mathrm{AB}$	Common side
$\triangle \mathrm{APB} \equiv \triangle \mathrm{AQB}$	RHS Theorem
(a) $\mathrm{BP}=\mathrm{BQ}$	
(b) $\angle \mathrm{PAB}=\angle \mathrm{QAB}$	CPCT
(c) $\angle \mathrm{PBA}=\angle \mathrm{QB}$	

Theoem: If two circles touch each other externally, the centres and the point of contact are collinear.

Data: A and B are the centres of touching circles.
To prove : A, P and B are collinear.
Construction: Draw the tangent XPY.
Proof: In the figure,

$\angle \mathrm{APX}=90^{\circ} \ldots . .(1)$	Radius drawn at the point of contact is
perpendicular to the tangent	

Theoem: If two circles touch each other internally, the centres and the point of contact are collinear.

Data: A and B are the centres of touching circles.
To prove : A, P and B are collinear.
Construction: Draw the tangent XPY

Proof: In the figure,

$\angle \mathrm{APX}=90^{\circ} \ldots . .(1)$	Radius drawn at the point of contact is perpendicular to the tangent
$\angle \mathrm{BPX}=90^{\circ} \ldots . .(2)$	$(1)+(2)$
$\angle \mathrm{APX}=\angle \mathrm{BPX}=90^{\circ}$	$\therefore \mathrm{APB}$ straight line
AP and BP are ona same straight line	
$\therefore \mathrm{A}, \mathrm{P}$ and B are collinear	

